Tentamen Statistiek voor KI/Inf

Tuesday 31 October 2006 - Open book tentamen

All books and all calculators allowed, cell phones and laptops not allowed.

- 1. Suppose that $f_Y(y) = c(4-y)^2$ for $0 \le y \le 4$ is the density of a random variable Y.
 - (a) Determine c so that this defines a proper density.
 - (b) Compute the expected value E(Y), $E(Y^2)$, and the variance.
 - (c) Compute the cdf (the cumulative distribution function).
 - (d) Suppose that 6 random variables are drawn from this distribution. What is the probability that precisely 4 of these random variables have values in the interval [0, 3]?
- 2. Consider the exponential density $f_Y(x) = 3e^{-3x}$ for $0 < x < \infty$.
 - (a) Compute the expected value of Y.
 - (b) Compute the variance.
 - (c) Give the pdf (probability distribution function) of the sum of two independent random variables with this distribution.
 - (d) What would be the answer for a sum of 20 independent random variables?
- 3. (a) Based on the random sample 6.1, 1.9, 2.0, 0.3, 5, 2.1 use the method of maximum likelihood to estimate the parameter θ in the uniform pdf $f_Y(y) = \frac{1}{\theta}$ for $0 \le y \le \theta$.
 - (b) Suppose the random sample in Part (a) represents the two-parameter uniform pdf $f_Y(y, \theta_1, \theta_2) = \frac{1}{\theta_2 \theta_1}$ for $\theta_1 \le y \le \theta_2$.

Find the maximum likelihood estimates for θ_1 and θ_2

- (c) Compute the expected values of the maximum likelihood estimators from Part (b) if θ_2 and θ_1 are the true parameters.
- 4. Consider a normal random sample X_1, \ldots, X_n with expectation μ and variance σ^2 , where the variance σ^2 is unknown.
 - (a) Suppose that a test for the mean μ is made, based on one random sample. Consider the following statements:
 - (S1) We reject the null Hypothesis $\mu = 0$ against the alternative $\mu < 0$ to the level $\alpha = 0.05$.
 - (S2) We reject the null Hypothesis $\mu = 0$ against the alternative $\mu \neq 0$ to the level $\alpha = 0.05$.

Is it true that (S2) follows from (S1)? Is it true that (S1) follows from (S2)?

- (b) Now two different samples from this population are taken. A 90-percent confidence interval for μ is constructed with the first sample, and a 95-percent confidence interval is constructed with the second. Will the 95-percent confidence interval necessarily be longer than the 90-percent confidence interval? Explain!
- 5. (a) Give the definition of an unbiased estimator!
 - (b) Is the maximum likelihood estimator always unbiased? Explain or give a counter-example!
 - (c) Suppose that X_1, \ldots, X_n and Y_1, \ldots, Y_m are independent random samples from normal distributions with the same σ^2 . Is the pooled variance

$$S_p^2 = \frac{(n-1)S_X^2 + (m-1)S_Y^2}{n+m-2}$$

an unbiased estimator for σ^2 ?